FAQ: Working with the Media

Answers to scientists’ most frequently-asked questions about working with the media

NASA scientist John Grotzinger answers reporters’ questions after a press conference at the 2012 AGU Fall Meeting.
Table of Contents

Part I: The Media

<table>
<thead>
<tr>
<th>Question</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>What should I expect when working with the media?</td>
<td>4</td>
</tr>
<tr>
<td>What are the ways the media reports science?</td>
<td>4</td>
</tr>
<tr>
<td>How do reporters choose what to write about?</td>
<td>4</td>
</tr>
<tr>
<td>What do reporters want from scientists?</td>
<td>4</td>
</tr>
<tr>
<td>Are there any rules of thumb regarding interacting with the media?</td>
<td>5</td>
</tr>
<tr>
<td>What is the typical news cycle for a story (i.e. how long is a story in the news)?</td>
<td>5</td>
</tr>
<tr>
<td>How has the media world adapted to talking to scientists?</td>
<td>5</td>
</tr>
<tr>
<td>Is the media only interested in covering 'controversial' science (e.g. climate change)?</td>
<td>6</td>
</tr>
<tr>
<td>How do journalists strive for accuracy in their stories?</td>
<td>6</td>
</tr>
</tbody>
</table>

Part II: Interviews and relationships with reporters

<table>
<thead>
<tr>
<th>Question</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>How should I prepare for an interview?</td>
<td>6</td>
</tr>
<tr>
<td>How do I refine my key messages?</td>
<td>6</td>
</tr>
<tr>
<td>How do I present research in a way that’s easily understood without compromising scientific integrity?</td>
<td>7</td>
</tr>
<tr>
<td>What are some best practices for explaining science in ways that journalists and the general public will understand?</td>
<td>7</td>
</tr>
<tr>
<td>What is jargon and how do I avoid it?</td>
<td>8</td>
</tr>
<tr>
<td>What are sound bites and how do I craft good ones?</td>
<td>8</td>
</tr>
<tr>
<td>What are some tips for telling an engaging story about my science?</td>
<td>9</td>
</tr>
<tr>
<td>What is social math and how can I use it?</td>
<td>10</td>
</tr>
<tr>
<td>How much detail should I go into when speaking with reporters?</td>
<td>10</td>
</tr>
<tr>
<td>How much do I need to "dumb down" the science?</td>
<td>11</td>
</tr>
<tr>
<td>What are some best practices for responding to reporters’ requests for information?</td>
<td>11</td>
</tr>
<tr>
<td>How can I establish and nurture successful long-term relationships with journalists?</td>
<td>12</td>
</tr>
<tr>
<td>How do I pitch a story to a journalist?</td>
<td>12</td>
</tr>
<tr>
<td>How should I prepare for Q&A?</td>
<td>12</td>
</tr>
</tbody>
</table>
Part III: Avoiding missteps and pitfalls ... 13

What are some common pitfalls when working with the media and how can I avoid them? 13

What are likely acceptable mechanisms (e.g. citation style, draft review, co-authorship, etc.) to prevent inaccuracies in journalists’ stories that will clearly be attributed to the interviewed scientist(s)? ... 14

What are some best practices for discussing controversial topics? .. 14

How can I prepare for and answer difficult or unexpected questions while staying on message? 15

How should I discuss uncertainty without making journalists think the science is unsettled? 16

How can I tell if a journalist is understanding what I’m saying? ... 16

Why can’t I review a journalist’s story before it’s published? .. 16

Note: This FAQ accompanies the Working with the Media webinar offered by AGU’s Sharing Science program on 29 May 2015.
Part I: The Media

What should I expect when working with the media?
Journalists may or may not have a science background, and may or may not have covered the topic before. So, it is best to talk to journalists as if they are new to the subject and don’t have a science background. They will ask for more detail if they need it.

What are the ways the media reports science?
Journalists report science in just about every way. It’s not uncommon to see science stories in the newspaper, on blogs, on TV, on Twitter, in photo slideshows or videos on the web, or to hear them on the radio. Some newspapers, websites and radio stations have dedicated science sections, though they are rarer these days.

How do reporters choose what to write about?
When it comes to writing about science, journalists look for research results that:
- Are new or previously unknown
- Represent a significant advancement to the field
- Relate to current events (western U.S. drought, New Horizons mission to Pluto…)
- Might impact our daily lives (sea level rise causing flooding in Miami)
- Go against the current scientific consensus (debate over Voyager spacecraft leaving the Solar System)
- Would catch your eye in a newspaper/online (whether escapees from Alcatraz could have survived)
- Include striking photographs or videos

Ultimately, reporters write stories that they think will be of interest to readers, so if you’re thinking of pitching a story to a reporter, take a few minutes first to think about what will be of interest to his or her audience and be sure to mention that in your pitch.

What do reporters want from scientists?
Most reporters generally want to know two things:
- What did you find?
- Why should I care?

Reporters report news to their readers, so it’s paramount that you highlight what is new and significant. In addition, they need to connect that news to their readers’ interests and values. Explain how and why the news will affect Joe Smith at the local pub or Jane Doe at the local library and you’ll make the reporter’s job much easier.
Are there any rules of thumb regarding interacting with the media?
Yes. Here are four rules of thumb to keep in mind when working with reporters:

1. Reporters are on short deadlines. You should respond quickly to their requests and get back to them when you say you will.
2. Everything you say (and write in an email) is on the record which means that it might show up in a story.
3. You likely won’t be able to review the story before it appears in print.
4. Be available after an interview via email or phone for any follow up questions a reporter might have.

What is the typical news cycle for a story (i.e. how long is a story in the news)?
The news cycle is short! More straightforward news stories might only be in the news for a day or two. Big news stories might last a little longer – as much as a week (or longer in the case of really big stories, including major natural disasters such as the Fukushima earthquake and subsequent nuclear reactor disaster.)

It’s safe to assume that the average news cycle is short (for most stories – science and otherwise – this is true.) Accordingly, if you know you’re about to send out a press release or participate in a press conference, it’s very important that you prepare to respond to journalists’ inquiries as soon as possible. Set aside time on your calendar to be available to reporters after the release goes out. Prepare your notes so that you can return their phone calls and emails right away.

For one scientist’s experience with this, read “You can hide under your desk ... as long as you still answer the phone” by Kat Compton on The Plainspoken Scientist, AGU’s science communications blog.

How has the media world adapted to talking to scientists?
In short...it hasn’t. And it won’t. These days, there are fewer and fewer dedicated science journalists. Most newspaper reporters, for example, cover a variety of topics, which can include anything from sports to business news. In today’s media landscape, few employers can afford to pay a journalist to cover one “beat.”

As a result, it is critical for you to make yourself aware of how journalists do their jobs, and how you can present information in ways that helps journalists get the facts right. Don’t expect a journalist to adapt his or her work style to accommodate you. It’s your job to be a marketer, a public speaker, and a translator. A little preparation goes a long way, and with practice, you can excel at working with journalists. AGU’s Sharing Science program has workshops and webinars to help you improve your skills and our website has resources to help you prepare for encounters with journalists.
Is the media only interested in covering ‘controversial’ science (e.g. climate change)?

The media is interested in covering all sorts of science, including new results, results that go against norms, gee-whiz stories, and more. At the end of the day, all journalists are writing for their audiences. In order to get an editors’ approval to write (or record) a story, each journalist needs to be able to “sell” a story idea to his or her editor. So, if you are considering pitching a story to a journalist, it’s important to consider what will be interesting to his or her audience.

How do journalists strive for accuracy in their stories?

Journalists are experts in journalism, not science. While they, of course, want to be accurate in their reporting, they most likely will not evaluate the methods sections of scientific papers or quibble with the interpretation of results. If you find a reporter has gotten the science wrong in an article, inform him or her—in a polite way—of the mistake. But don’t overburden journalists with responsibilities beyond their expertise or jobs.

Part II: Interviews and relationships with reporters

How should I prepare for an interview?

When a reporter contacts you to schedule an interview, find out what the format will be. Is it an in-person, phone, radio or TV interview? Who is the person doing the interview? About how long will it be? If it’s for TV or radio, is the interview being taped or is it live?

Then, write and rehearse your key messages—the main thoughts you want to share during the interview. Practice repeating them until you can rattle off the essentials but don’t memorize them word-for-word.

If you’re doing an interview by phone, find a quiet room to use and put a “Do not Disturb” sign on the door. Have your notes in front of you during the call so you can use them as a reference. Whenever possible, use a landline phone for better call quality. (You wouldn’t want to lose your cell phone signal in the middle of a live radio interview.) And turn off your cell phone ringer.

If you’re doing a radio interview, practice delivering your messages over the phone to a friend before the interview. Can your friend hear you okay? Are you speaking too fast or too slow? Too loud? Too softly? Also, try standing up and smiling while you’re on the phone. Often, your posture comes through over the phone.

If you’re doing a TV interview, practice delivering your messages in a mirror. Take note of any strange facial expressions you make. Aim to be animated, but avoid flailing your arms. Also, wear plain clothes.
and basic makeup. Avoid wearing stripes, which don’t do well on TV. Avoid wearing green, too, in case they want to use a green screen to superimpose a background behind you.

Visit the Prepare for an Interview with a Journalist page on the Sharing Science website and watch the Working with the Media webinar for more advice on how to prepare for an interview.

How do I refine my key messages?

The Share Science in the News section of AGU’s Sharing Science website has a number of tools to help you prepare. Specifically, you can download and print a copy of AGU’s Message Worksheet to help you develop your “take-home” messages – the key points you want to emphasize and reiterate during an interview.

Start by gathering your thoughts. What are the 2-3 main things you want to share during the interview? Write them down in plain language, avoiding any jargon. As you write, keep in mind that your audience’s only experience with science might be high school chemistry. Be sure to include relevant stories, anecdotes and metaphors. Also make sure you answer the two important questions all journalists will want answered: What did you find and why does it matter?

Once you’ve written (and perhaps re-written) your main messages, read them aloud to a friend. Ask that friend to point out any jargon that you may have missed. Also ask them, “Does this make sense?” Then, finalize your messages. Practice saying them out loud until you can repeat them on demand, but avoid memorizing them word-for-word, lest you sound like a robot.

Lastly, it’s helpful to think about what questions you might get in response to your messages. It’s worth taking some time to think about answers to those questions and rehearsing them as well.

How do I present research in a way that’s easily understood without compromising scientific integrity?

“One should aim not at being possible to understand, but at being impossible to misunderstand.”

—Quintilian

You do not have to compromise accuracy to say things simply. Rather, always use the simplest word possible, and, as Thomas Jefferson said, “Never [use] two words when one will do.” Yes, it’s important to use the most correct words when describing scientific research, but if you use words that are so specialized that only a tiny subset of people truly understand their meanings, you are leaving the door open to being misunderstood by everyone else. Be simple and you will maximize the chances of journalists getting your story right.
What are some best practices for explaining science in ways that journalists and the general public will understand?

- **Tell stories.** People are hard-wired to understand and retain information better when they hear it in story form, rather than as a listing of facts.

- **Use an analogy.** Come up with a good analogy to explain your research.

- **Make it personal.** Tell stories and anecdotes from the field. Or, relate your science to your everyday life or the local issues in your community.

- **Use simple terms.** Jargon obfuscates. Why risk being understood? Instead, do all you can to make sure you convey accurate science by using clear, simple terms to describe your science.

- **Practice.** Practice talking to friends—in person and over the phone. Do they understand what you’re saying? What questions do they have after you speak?

What is jargon and how do I avoid it?

Jargon is the specialized language that experts use to communicate with others in their field. There are two types of jargon: technical terms, including acronyms, that only those within the field are familiar with and words that have two meanings—a meaning within your field and a “lay” meaning. Scientists should be aware of both types of jargon and spend some time thinking about simple and clear terms they can use in place of jargon.

Why is this so important? A journalist confused by the terms you use might get things wrong. The onus is on you to help them get it right. While some journalists might be very familiar with science terminology, you should always strive to make your remarks intelligible to all.

Use words anyone can understand. If you must use a technical term or an acronym, define it, and don’t introduce more than one or two technical terms or acronyms in any discussion.

What are sound bites and how do I craft good ones?

A sound bite is a short thought or clever phrase that artfully summarizes a thought. Sound bites are the 5- to 10-second clips that appear in TV interviews, or the one-sentence quotes that appear in stories. Often, they are extracted from a longer interview. A sound bite that appears in a story might be something that was said off the cuff, or a prepared thought carefully crafted before an interview.

Famous examples of sound bites include:

- **U.S. President Franklin D. Roosevelt describing December 8, 1941, as "a date which will live in infamy" in a speech.**
- **Neil Armstrong’s infamous first words from the surface of the moon: “That's one small step for a man, one giant leap for mankind.”**
- **“The Earth is a very small stage in a vast cosmic arena,” as Carl Sagan describes our home planet in *Cosmos.***

You don’t have to be a master orator, however, to craft a good sound bite. There are simple things you can do. For example, instead of describing an object by listing its dimensions, compare it to a common household object: “The instrument is about the size of a juice box.”

Or, use social math to make intangible sums tangible: “The glacier shed an iceberg roughly the size of Manhattan Island,” or “The rocket weighs as much as about 400 elephants.”
Tell stories and paint pictures with your words. You might be surprised to find that sound bites will come naturally. For example, “Getting that lava sample without scorching my fingers was the hardest thing I’ve ever done,” or “When I woke up that morning, I didn’t expect to be canoeing across a raging river just a few hours later.”

Lastly, share your passion for your work. Human emotions add dimensions to stories. Don’t be afraid to share your thoughts such as, “We saw for the very first time that unicorns really do exist, and that was awesome!”

What are some tips for telling an engaging story about my science?

Storytelling is a very powerful and effective tool that scientists can use to talk about their work. Human brains are hard-wired to connect to stories. Research has shown that people’s brains light up more for narratives than listings of facts. They also retain information better and longer.

People also connect better when storytellers use action words or describe texture using words such as slippery, gritty, and slimy. When you use these words, people’s brains will respond as though they were touching objects with those textures.

Stories are also simple. They have a beginning, a middle and an ending. You don’t need to be Stephen King or Ernest Hemingway to tell a good story – you just need to practice.

Here are four narrative themes that lend themselves well to science tales, as described in [Three tips for sharing science with any audience](https://www.agu.org/news/the-plainspoken-scientist/3-tips-for-sharing-science-with-any-audience/#) on AGU’s The Plainspoken Scientist blog:

- **Journey** – A journey is a story about travel. Voyaging to Antarctica to study glaciers, or to Chile to look at earthquakes, or even performing fieldwork within range of home are science journeys.
- **Quest** – Similar to a journey, a quest is about seeking answers – something all researchers do. In a quest story, make sure to include the trials and triumphs that occurred along the way to a new discovery.
- **Mystery** – Science and mystery naturally go together. Think about all the science-based dramas on television, such as CSI. Crafting a story about studying ice cores to reveal clues about Earth’s atmospheric history is an example.
- **Stranger comes to town** – This is when someone, or something, unexpected enters the scene. This can be very similar to a mystery, but is based on a specific event. Examples of science strangers include a tsunami or a destructive super storm.

For more tips on telling good stories, read these blog posts on The Plainspoken Scientist:

- [From Silent Spring to . . . Jaws? Using Stories to Communicate Science](https://www.agu.org/news/the-plainspoken-scientist/)
- [Want to Really Communicate Your Science to the Public? Go on a Journey and They’ll Follow](https://www.agu.org/news/the-plainspoken-scientist/)
- [Thinking of giving a TEDx-style talk? Do it – but with plenty of preparation!](https://www.agu.org/news/the-plainspoken-scientist/)
- [Three tips for sharing science with any audience](https://www.agu.org/news/the-plainspoken-scientist/)

9 | FAQ: Working with the Media | SharingScience.agu.org
What is social math and how can I use it?
Social math is describing a value using a common object of known size in place of hard numbers. Social math can make intangible sums more tangible for readers. Here is an example from NASA.gov of the Saturn V rocket, which took astronauts to the moon, described using social math:

“The Saturn V rocket was 111 meters (363 feet) tall, about the height of a 36-story-tall building, and 18 meters (60 feet) taller than the Statue of Liberty. Fully fueled for liftoff, the Saturn V weighed 2.8 million kilograms (6.2 million pounds), the weight of about 400 elephants.

The rocket generated 34.5 million newtons (7.6 million pounds) of thrust at launch, creating more power than 85 Hoover Dams. A car that gets 48 kilometers (30 miles) to the gallon could drive around the world around 800 times with the amount of fuel the Saturn V used for a lunar landing mission.

It could launch about 118,000 kilograms (130 tons) into Earth orbit. That’s about as much weight as 10 school buses. The Saturn V could launch about 43,500 kilograms (50 tons) to the moon. That’s about the same as four school buses.”

How much detail should I go into when speaking with reporters?
It always helps to prepare several key messages before speaking with a reporter. Be sure to answer these two questions in your messages: “What did you find?” and “Why should my readers care?” We recommend creating several messages that go into varying levels of detail. First, start with a 2-3 sentence, or 30-second, summary of your news. Second, jot down three (or so) more detailed examples that relate back to your summary. In this way, your messages are layered, but all relate. Then, let the reporter decide the level of detail he or she wants to get to. No matter what he or she asks, you’ll be prepared with quick, clear messages for him or her to use.

When in doubt, always focus on the bigger picture. For example, if you used 15 audio sensors to record the sound of a lightning strike, mention that those 15 sensors were placed five feet apart in a semi-circle around the strike zone, but don’t bother with the make, model and serial number of each sensor. What’s important in this example is being able to paint a rough picture so that a reader could imagine himself or herself witnessing the experiment, not re-creating it.
How much do I need to "dumb down" the science?

As scientist Sarah Beatty put it during a presentation at the 2015 Joint Assembly, "It's not about dumbing down; it's about respecting the language of the audience."

We never encourage scientist to “dumb down” their work. Instead, we encourage you to use simple, clear terms – terms that anyone can understand. Avoid using scientific jargon when a simpler word or phrase will do. For example, say “human-caused” instead of “anthropogenic” and say “carbon dioxide” instead of “CO$_2$.” Be mindful also of words that have two meanings. For example, when most people hear the word “driver,” they think of a golf club or a person operating a car rather than an “influential factor.”

Also, use analogies. Tell stories. Rather than rely on charts, graphs, and numbers that might not translate, paint pictures with your words and share anecdotes from the field. For more advice from a scientist’s point of view, read “Scientists should speak simply to other scientists, too” by PhD scientist Ilissa Ocko on AGU’s The Plainspoken Scientist blog.

Or, if you need more convincing yet, read North Carolina State University science writer and public information officer Matt Shipman’s rant “No, Writing Intelligibly Is Not ‘Dumbing It Down’” at scilogs.com.

As Shipman says in his post, “This is not dumbing it down. I refer to it as using ‘shared language.’”

What are some best practices for responding to reporters’ requests for information?

Reporters are often working on a short turnaround and need information as soon as they can get it. The news cycle is very fast: you might have minutes or hours to get back them, not days. There are a handful of mutually beneficial things you can do when a reporter calls or emails:

1. **Gather Your Thoughts** – If a reporter calls you out of the blue and you need some time to collect your thoughts, ask if you can call back. Be respectful of his or her time and call back when you say you will.

2. **Be Timely** – Always ask reporters when their deadlines are. Make sure to get back to them in plenty of time so that they can include your information in their stories before they send them off to their editors.

3. **Ask Questions** – It is okay to ask a reporter what his or her story is about. This will help you provide answers that are in context.

4. **Suggest Other Sources** – Provide reporters with other sources who can provide comments or offer supplemental information.

5. **Offer visuals, audio or other multimedia** – If you have photos or videos from the field and you own the copyright, offer them to reporters to use.

Manahloh Belachew answers Maria-Jose Vinas's questions at the 2009 AGU Fall Meeting.
How can I establish and nurture successful long-term relationships with journalists?

The best way to start a successful relationship with a journalist is to be a good source if and when you work with them. Respect their deadlines. Get back to them when you say you will. Offer them visuals (photos and videos) to use with their stories. Be available for follow-up questions. And accept that you most likely will not be allowed to review their story before it is printed.

To stay connected in the long term (or to initiate a connection) let the journalist know when you have a new paper coming out. Or, invite him or her to visit your lab or go out for a cup of coffee. Also, let the journalist know that you are available to comment on stories about other research. Lastly, you can also contact him or her about new things going on in your field that might not be related to your research. This is invaluable for reporters who often have to come up with story ideas on their own.

How do I pitch a story to a journalist?

If you have newsworthy research or findings you believe would be of interest to journalists, you can “pitch” the story to them. If you are on familiar terms with a journalist, feel free to call or email him or her, but be sure to let your press office know first before you reach out especially if you are working together on a press release. You don’t want to undermine the press office’s work.

Be respectful of the journalist’s time and be prepared before you call. Have a brief, succinct summary of the news ready to share. Be sure to answer these two questions in your summary: “What is the news?” and “Why should the journalist and his or her readers care?” If you can answer these two questions, a journalist should be able to tell you within a minute of chatting whether he or she is interested.

If you are not on familiar terms with any journalists, contact your press office. Or, you can always contact AGU’s Public Information office at news@agu.org. These offices can help you determine whether your results are newsworthy and also work with you to find the best way to share the news with the press. This might mean issuing a press release, writing a blog post, calling a journalist your press officer knows, sharing the news on social media, organizing a press conference, or more.

For more information on working with your press office and issuing press releases, visit the Share Research News page on the Sharing Science website.

How should I prepare for Q&A?

Practice. Practice. Practice. Think of obvious questions reporters might ask you. Then, think of how to respond to those questions. Ask a friend to role-play with you. (People love getting the chance to “play” a reporter!) Have them ask you basic questions, obvious questions, and tough questions. Practice giving your answers. Then, ask your friend for feedback. Were you understandable? Did you make strange faces when answering certain questions? Did you say something you shouldn’t have? Were you really eloquent on some answers?

In general, when answering questions from the press, tell them what you know. Don’t be afraid to say “I don’t know” if you don’t know the answer to something, and explain why. For example, you could say “Our study did not look into that,” or “That’s not my area of expertise.” Often, interviewees get into trouble when they try to answer questions they shouldn’t be answering. It’s better to say “I don’t know,” and refer the journalist to another scientist or promise to follow up with more information than to say something inaccurate that he or she might then use in a story.
Also, avoid phrases that imply doubt such as “We think” and “It could be.” Use more definitive statements such as “This is the best science we have” and “It is most likely this.” Lastly, have an analogy or anecdote ready. Journalists write stories, so it’s helpful if you can tell them a story they can pass along to their readers.

Part III: Avoiding missteps and pitfalls

What are some common pitfalls when working with the media and how can I avoid them?

- **Common Pitfall #1: Getting into the weeds.** Focus on the bigger picture. Prepare your top three key messages ahead of time and practice delivering them to a mirror, to a friend, over the phone, etc. During the interview, bring the conversation back to your key messages. Then, keep coming back to them. Communicating in simple, repeated messages is not a natural skill for many scientists, but it is a critical skill for any speaker. Often, audiences need to hear ideas repeated before they will remember them. For more on this, read “How much detail should I go into when talking with reporters” in Part II of the FAQ.

- **Common Pitfall #2: Answering irrelevant questions.** Practice transitioning from or deflecting off-topic questions using phrases like, “I think what you’re getting at and what I can tell you about our findings is …,” or “Our research didn’t look at that, but what we did find is…” Although you won’t always encounter them, it’s best to be prepared ahead of time. If a journalist persists with off-topic questions, recommend another scientist who can answer his/her questions.

- **Common Pitfall #3: Answering questions outside your expertise.** This can happen all-too-easily with the interviewee having no recollection of the things he or she said after the fact. If you answer a question you aren’t qualified to answer, you may be quoted saying something inaccurate, which could jeopardize your credibility. Thankfully, there’s a simple solution: If you don’t know the answer to a question, don’t answer it! Instead, say “I don’t know the answer to your question, but I can find out and get back to you soon,” or “I don’t know, but I can put you in touch with someone who does,” or “That’s beyond my area of expertise, but what I can tell you is…”

- **Common Pitfall #4: Being unprepared for tough questions.** Anticipate the kinds of questions a journalist might ask you, and practice answering them. If a question takes you by surprise, take a moment to think about your answer before you speak.

- **Common Pitfall #5: Responding to inquiries too slowly.** Journalists are often working on very short time frames, and the amount of time a given story is “hot” in the news is relatively brief. Always respond to journalists’ inquiries as soon as possible. It is not uncommon for a press release to be issued on a Tuesday and for the story to be “old news” by Thursday.

No matter what pitfalls you encounter, always remember to keep your cool. Take a breath. And think before you speak.
What are likely acceptable mechanisms (e.g. citation style, draft review, co-authorship, etc.) to prevent inaccuracies in journalists’ stories that will clearly be attributed to the interviewed scientist(s)?

You’ll be hard-pressed to find any journal citations in The New York Times, or in any newspaper for that matter. Unlike the authors of scientific papers, journalists are not concerned with giving credit – they are concerned with facts.

If you feel strongly about giving others credit, mention them during the interview using phrases such as, “We built upon earlier work by Dr. John Smith who was the first to find that the Earth is not flat. We’ve now shown definitively that it is actually round.” Or, “My colleagues Jane Doe, John Smith and I found...” or “I built off of Jane Doe’s original findings to determine conclusively that the Earth is round and not flat, as previously assumed.” There is no guarantee that a journalist will include this credit information, but it improves the odds.

The least effective method of giving others credit is to include a laundry list of previously-published papers and funding information, which may be useful to a journalist seeking background information but will not likely make it into a story.

Ultimately, when it comes to accuracy, the onus is on you. Think carefully about the words you use and the information you share. The more jargon you use the more you increase your odds of being misunderstood. If a journalist can’t understand you, he or she is more likely to unwittingly share inaccurate information. Use clear, simple language and repeat important points often.

What are some best practices for discussing controversial topics?

1. **Be prepared.** Prepare your key messages. Think about what in those key messages might be contentious or controversial and prepare how to respond to tough questions.

2. **Stay calm.** Always keep your cool. Take a breath if you need it and always bring the conversation back to your main points.

3. **Make it personal/relevant.** Usually, even for the most controversial topics, you can find some common ground with your audience. Connect with them over that common ground. For example, if you’re talking about water quality, you can say something like, “I want my kids, grandkids and great grandkids to have clean drinking water, too, which is why I’m talking about this issue.”

NASA scientist Paul Mahaffy answers journalists’ questions after a 2012 AGU Fall Meeting press conference.
How can I prepare for and answer difficult or unexpected questions while staying on message?

Always prepare your main messages – the two or three points that you want a journalist to take away from your discussion – before any interview. Consider whether anything in your messages might be contentions. Think about the questions you might receive in response to those messages and prepare answers to those questions. When encountering a difficult or unexpected question, tie your answer back to these main messages.

Once you’ve prepared your messages and answers to likely questions, practice the interview with a colleague. This will help minimize your chances of being caught off guard. Ask a friend or colleague to imitate a heavy-hitting reporter and take a crack at answering some really tough questions. Solicit his or her feedback on your responses, ability to stay in control, and ability to transition from tough questions. More likely than not, your colleague will be a tougher interviewer than an actual reporter.

Here are some tips for staying calm and on-topic during a difficult interview:

1. **Take a breath and stay in control.** If a journalist asks you a difficult question, pause for a moment and think before you answer. Take a breath if you need one. Don’t worry, the journalist will wait if he or she really wants a question answered.

2. **Don’t guess.** This may seem simple, but it’s so easy for interviewees to get in trouble by answering a question when they don’t know the answer. Plain and simple: If you don’t know the answer to a question, don’t answer it. Don’t say “no comment” either. Instead, explain why you can’t answer it “Our study did not focus on that…” and transition back to your message, “…but what I can tell you is this.”

3. **Be brief.** The more you ramble, the more you risk saying something you shouldn’t. Be as brief and concise as possible when answering questions.

4. **Use transitions.** If a question is not relevant or is phrased in a way that might lead you to say something you shouldn’t, use transitions to get you back to your main messages. For example, you can say things such as “I see where you’re going with that, but I think what’s really important here is…”

5. **Repeat, repeat, repeat.** You may not like repeating the same things over and over, but repetition is an effective ways to get an idea to stick. Don’t hesitate to repeat your main points multiple times.

6. **Stay positive.** Avoid making negative judgmental statements about other researchers, their methods or their findings. Always stay positive and focused on your reason for being in the interview.

Regardless of how hot it gets, always remember to keep your cool.
How should I discuss uncertainty without making journalists think the science is unsettled?
As TV meteorologist and AGU blogosphere blogger Dan Satterfield says, “Tell them what you know and not what you don’t know.” Use phrases like, “The best science we have tells us...” or “Our research tells us the most likely reason is...”

Avoid phrases that imply doubt, such as “we think” and “it could be.” Often, the science is settled even if there isn’t 100 percent consensus. Focus on the consensus and not on outliers. Focus on relevant findings and not on what is still unknown.

Remember: To the general public, the word “uncertainty” means “unknown.” To scientists, however, “uncertainty” means “known to the nth degree.” Read “Certainty vs. Uncertainty: Understanding Scientific Terms About Climate Change” on the Union of Concerned Scientists website for more thoughts on discussing uncertainty.

How can I tell if a journalist is understanding what I’m saying?
Ask! Journalists aren’t the only ones who can ask questions during an interview. If you just explained a nuanced yet critical concept, ask the journalist, “Did that make sense?” Or ask him or her to repeat what you said back to you. If he or she didn’t get it right, politely let the journalist know, and try to explain it in a different way. Help journalists get the details right.

You can also offer to be available after the fact to clarify any points or answer any follow-up questions. This only works, however, if you are available. So check your emails often and make sure your cell phone ringer is turned on.

Why can’t I review a journalist’s story before it’s published?
Many journalists will not let you review their stories before they go to print. There is a tradition with the media that to protect a journalist’s integrity, he or she does not let sources review his or her story before it goes to print. This comes from the idea that the journalist is an impartial observer who merely reports the facts and doesn’t let sources influence what he or she writes. This is an industry standard and it does not mean that the journalist does not trust you. So, don’t let it bother you!

If you’ve made an effort to be clear and concise, you’ve asked the interviewer “Does that make sense?” and you’ve offered to be available for further questions, then you’ve done all you can to minimize the chances of something inaccurate making it into a story.

If a printed story has a factual error, email the journalist to let him or her know. The publication might wish to publish a correction. But, if something in the story is simply written differently than how you would write it, accept that the journalist is telling your story in his or her voice and leave it at that.